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Abstract

Recent advances in the development of effective Evolutionary Strategies (ESs) have paved
the way to their usage in a broad variety of problems. Among the others, the OpenAl
Evolutionary Strategy (OpenAl-ES) has emerged as a notable method to discover solutions
for robotic problems like locomotion and aggregation, or for classic tasks like pole balancing.
The main advantage of OpenAl-ES over its counterparts is the usage of momentum vectors
storing information about the relationship between parameter variations and performance,
with no need for computational demanding covariance matrices. However, previous studies
show that OpenAI-ES may achieve low performance in rather complex scenarios or when the
function used to evaluate performance is not designed for ESs. This makes us hypothesize
that there is room for enhancements of OpenAlI-ES. This work delves into the design and
analysis of three variants of OpenAI-ES and performs a thorough comparison of OpenAl-
ES, its variants and the Stochastic Steady State with Hill Climbing (SSSHC) on a broad set
of problems, including several benchmarks from the literature. Our results prove that the
variants introduced in this work are competitive with OpenAI-ES in many cases. Moreover,
SSSHC outperforms the other methods in most of the considered problems, while OpenAl-
ES excels in robot locomotion. This work contributes to shed the light on both the pitfalls
OpenAI-ES can encounter and new perspectives to further improve it.
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1. INTRODUCTION

Evolutionary Strategies (ESs) [1, 2] are search techniques belonging to the broad family of Evo-
lutionary Algorithms (EAs) [3]. Their operation draws inspiration from biological evolution: a
population of individuals, sometimes referred as “genotypes”, is randomly initialized and evolved
according to the Darwin’s theory [4]. Individuals represent possible solutions to a given problem
and are generally defined as vectors of bit, integer or floating-point values called “genes”, although
more sophisticated encoding techniques can be used [5-9]. Evolution is typically organized as a
sequence of iterations, also called generations. At each iteration, individuals are evaluated and
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receive a value, defined as fitness or performance, assessing their capability to solve the considered
problem. Biological mechanisms like selection, random mutations and crossover are then used to
update the individuals and create the new population. Evolution stops when a termination criterion
is met (e.g., the total number of iterations or a specific level of performance has been reached). A
schematic is provided in FIGURE 1.
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Figure 1: Illustration of the operation of an ES: a population is evolved until a stopping condition
occurs. At each iteration, the population is evaluated. Selection takes place by identifying
the best individuals. Finally, population is updated through mutation and/or crossover
operators.

Over the last decades, we observed a shift from the biological principles inspiring early versions
of ESs to more elaborate methods. For example, the Covariance Matrix Adaptation Evolution-
ary Strategy (CMA-ES) [10] computes a covariance matrix storing the mutual relationship among
genes/parameters. The matrix is used to drive the search process towards the directions in the search
space that should correspond to higher performance. CMA-ES proved successful in domains like
pole balancing [11, 12], test functions [13], robot locomotion [14] and swarm robotics [12, 15, 16].
A similar method is the Exponential Natural Evolution Strategies (xNES) [17, 18], which has
found application in a broad set of problems, such as robot locomotion [14], robot navigation
[19], pole balancing [12, 18], test functions [17, 18] and swarm robotics [12, 15, 16]. Despite
the good performance, both CMA-ES and xNES are computationally demanding, since storing
and updating the covariance matrix is expensive and can become unfeasible when the number
of genes/parameters is high [14, 20]. The Separable Natural Evolution Strategies (sNES) [18,
21] collects gene/parameter variances separately (i.e., a vector variance is stored) and uses them
to drive the search towards the expected most promising regions of the search space. A major
advantage is the significant computational cost reduction, since no covariance matrix has to be
stored. Furthermore, the usage of a vector variance allows sNES to be applied to high dimensional
problems [18, 21]. The sNES algorithm has been used in tasks like test functions [21], pole balancing
[12, 14, 21], robot locomotion [14] and Multi-Objective Optimization (MOO) [22]. A common
trait of these techniques is the evolution of a single individual, often termed “centroid”, which is
iteratively updated based on the aforedescribed procedures.
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One of the most recent and successful ESs is the OpenAl Evolutionary Strategy (OpenAI-ES) [23],
which demonstrated excellent capabilities of solving rather difficult problems like robot locomotion
[14, 24], swarm robotics [16, 25, 26], pole balancing [14], Atari games [23], MOO [22, 27, 28]
and competitive co-evolution [29]. Differently from the previously mentioned ESs, a key feature
of OpenAI-ES is the usage of two momentum vectors storing historical information about the
relationship between gene/parameter variations and performance. This enables the algorithm to
discover the regions of the search space corresponding to higher expected fitness and drive the search
process towards those regions. As for the previous algorithms, OpenAl-ES works by evolving
a single individual/centroid: at each iteration, a pool of samples (i.e., parameter variations) is
randomly extracted from a normal distribution. To capture the actual effect of the variation, each
sample is either added or subtracted and a pair of symmetric samples is derived [30]. All the
individuals are evaluated and receive a fitness score. A ranking of the samples (guided by fitness)
is performed to compute the gradient of the expected fitness. Lastly, the Adam optimizer [31] is
employed to update the two momentum vectors and the centroid. An illustration of the OpenAI-ES
algorithm is provided in FIGURE 2.
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Figure 2: Schematic of OpenAI-ES: the centroid is evolved until a termination condition occurs. At
each iteration, a set of samples is extracted from a normal distribution N (0, 1). Samples
are either added to or subtracted from the centroid and these individuals are evaluated.
Based on the obtained fitness, samples are ranked and are assigned weights to compute the
fitness function gradient. Lastly, the two momentum vectors and the centroid are update
through Adam.

Despite its success in a variety of problems (see also [32]), there are cases in which OpenAlI-ES fails
to reach a good performance. As pointed out in [14], the fitness function definition highly affects
the chance of OpenAl-ES to discover effective solutions. In their study, the authors compared a
Reinforcement Learning (RL) [33] algorithm like Proximal Policy Optimization (PPO) [34] and
OpenAl-ES on a series of Pybullet locomotion problems [35]. The authors showed that OpenAI-ES
falls short to PPO when the fitness function is specifically tailored for a RL algorithm, whereas
the opposite is true when the fitness function is designed for an Evolutionary Algorithm (EA).
In [27, 28], the authors tested the capability of OpenAl-ES to evolve solutions for a challenging
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collective MOO scenario in which a group of 5 AntBullet robots [35] has to aggregate and loco-
mote. The results achieved in both studies reveal that OpenAI-ES manages to address effectively
the locomotion objective, but fails with respect to the aggregation objective. Moreover, a recent
study demonstrated that a relatively simple EA like the Stochastic Steady State with Hill Climbing
(SSSHC) [36] is competitive with the OpenAl-ES in a particular MOO scenario [22]. On one
side, this implies that increasing the complexity of ESs does not necessarily translate into enhanced
performance. On the other side, the aforementioned studies indicate that there is room for improving
OpenAlI-ES, particularly in those domains in which its performance is sub-optimal.

This works seeks to fill a gap in the improvement of a modern ES like OpenAI-ES by introducing
three variants: (i) Population OpenAI-ES (PopOpenAI-ES), which evolves a population of cen-
troids independently, with the possibility to replace at each iteration the worst performing centroid
with the best one; (ii) Population OpenAI-ES with refinement (PopOpenAI-ES+HC), which com-
bines PopOpenAl-ES with the Hill-Climbing (HC) algorithm [37] seeking to improve solutions
through single-gene mutations as in SSSHC [22, 38], and (iii) OpenAI-ES with refinement (OpenAl-
ES+HC), which combines OpenAI-ES and HC. Specifically, we compared OpenAl-ES and its three
variants on a series of benchmark problems:

* a subset of 33 test functions derived from [39];

« the N-bit parity problem [40], with N € [5,6,7, 8];

» the standard and long-poles versions of the double pole balancing problem [14, 41, 42];
* the mountain car continuous problem [43, 44];

* the pendulum problem [43, 44];

* a grid navigation problem [44];

* a single-robot version of the foraging with poison problem [45];

* the MuJoCo pusher, reacher and swimmer problems [46];

* the Pybullet halfcheetah, hopper and walker2D problems [35];

* the recently introduced halfcheetah2D problem [47].

As a baseline method, we considered SSSHC, because it represents an effective technique in some
of the considered domains [36, 38] and has proved competitive with OpenAI-ES in a MOO scenario
[22].

Our outcomes demonstrate that all the proposed variants outperform or equal OpenAl-ES with
respect to test functions, N bit-parity, double pole balancing, foraging and swimmer problems.
Surprisingly, SSSHC is notably more effective than OpenAI-ES and its variants in a wide range
of problems. Lastly, OpenAI-ES bests the other methods with regard to locomotion problems.
Overall, this underscores that the considered variants are competitive in most of the cases, yet not
as highly performing as OpenAI-ES in complex locomotion problems.
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2. MATERIALS AND METHODS

In this section, we briefly review the tasks selected and we provide a thorough illustration of the
experimental settings. As a simulation tool, we employed evorobotpy3 [32].

2.1 Problems

The five algorithms (i.e., OpenAI-ES, PopOpenAl-ES, PopOpenAI-ES+HC, OpenAI-ES+HC and
SSSHC) have been evaluated on 50 problems of different nature, ranging from test function op-
timization to robot locomotion. For each task, given a fitness function F' € R, the objective is
formulated in terms of function maximization (see Eq. 1):

max F (1

Regarding test function optimization, function maximization is achieved by optimizing the values
of the individual’s genes (see Egs. 2 - 3). Conversely, in the other problems, function maximization
depends on the fitness function definitions reported in Egs. 4 - 17.

2.1.1 Test functions

Test functions constitute widespread benchmark tasks to assess algorithmic performance [39, 48].
Given a vector x of length d, the general formulation of the problem is shown in Eq. 2:

min F(x) 2)

However, in order to be compliant with our problem definition, we considered the following for-
mulation (see Eq. 3):

max —F(x) (3)

We used 33 test functions derived from [39], which constitute widespread problems in Evolutionary
Computation (EC). In particular, we considered the functions reported in TABLE 1.

2.1.2 N bit-parity

The family of N-bit parity problems are another example of benchmark tasks largely employed in
the literature [40, 49, 50]. Given as input a N-bit string, the task is to count the number of 1-bits and
returning 1 when the sum is even. Because the number of N-bit strings is 2V, the problem involves
a full evaluation over all the possible inputs. Therefore, the fitness function F is defined by Eq. 4:
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Table 1: List of test functions derived from [39]. Each function takes as input a vector x of length
d. As concerns the Schewefel function, we set a = 5.
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Trigonometric 2 Whitley Zakharov
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where o; is the expected output for the i — ¢4 bit string and o; represents the output.

In this work, we considered the N-bit parity problem with N € [5,6,7,8], which constitutes a
challenging task [40].

2.1.3 Double pole balancing

Pole balancing [42] is a widely recognized benchmark task in EC [7, 11, 18, 41]. The problem
consists in controlling a system in which a cart has to maintain two poles upright. The cart can
move only horizontally (see FIGURE 3).

Figure 3: Double pole balancing problem: a cart (displayed in red) has to maintain two poles
(displayed in light blue) upright by moving horizontally on a flat surface.
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The goal is to maintain the poles upright by moving the cart within the allowed track (black line in
FIGURE 3). Eq. 5 illustrates the computation of the fitness function F.

Fe o Z Ns(e) (5

The symbols Ng and Ng(e) denote, respectively, the number of episodes and the number of steps
the cart manages to maintain the poles upright without leaving the track during the e — th episode.
Episodes might end prematurely if either the cart goes out of the track or when at least one pole
falls.

In this work we considered both the standard version of the problem [42] and the long-poles version
[41, 42]. The latter problem is remarkably more challenging than the former due to the different
ratio between pole dimensions (respectively % and %). Furthermore, we adopted the “fixed initial
states condition” initialization introduced in [41] (see also [22, 36]).

2.1.4 Mountain car continuous

The mountain car continuous problem [43] is a benchmark task in RL [51, 52]: a car starts from a
resting point in a sinusoidal valley and has to reach a target location at the top (see FIGURE 4). In
the version included in Gymnasium [44], the fitness function F' is computed according to Eq. 6:

NE
F= NLZ[B(e) ~0.1xa(e)?] (6)

E e=1

(7

100 if target is reached
B(e) = .
0 otherwise

In Eq. 6, B(e) is a bonus for reaching the target location at the episode e, whereas a(e) denotes the
force applied to move the car during the e — th episode.

2.1.5 Pendulum

The pendulum problem takes inspiration from the classic task in control theory. It is characterized
by low dimensionality, but high non-linearity [53]. Specifically, a pendulum has one end attached to
a fixed joint, while the other end is free to move (see FIGURE 5). The pendulum is initially placed
in a random position. The objective is to apply a torque making the pendulum swing, ultimately
reaching an upright configuration. Eq. 8 provides the definition of the fitness function F’:
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Figure 4: Mountain car continuous problem: a car (black rectangle) must reach a target location
(marked with a flag) by climbing a hill.

NE
F = _NLE Z:[norm(@(e))2 —0.1=% 9(6)2 —0.001 % a(e)?] (8)

e=1

where e indicates the evaluation episode @(e) is the pendulum angle in radians, 6(e) denotes the
angular velocity and a(e) represents the applied torque. The function norm() converts the angle
0(e) into a value bounded in the range [—x, 7).

(o~

Figure 5: Pendulum task: the pendulum starts from a random position and must reach an upright
configuration.

2.1.6 Grid navigation

The grid navigation problem is a commonly used task in EC literature [22, 54, 55], which involves
an agent that has to navigate in a grid environment and reach a target location (see FIGURE 6). The
problem is formulated according to Eq. 9:
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Figure 6: Grid navigation task: an agent (displayed in blue) must reach a target location (displayed
in red). The agent can perform one out of four possible actions: (i) left; (ii) top; (iii) right;
(iv) bottom.

NE

1
F=— B(e) — P(e 9
- 2;[ (¢) = P(e)] ©)
Ble) = 1 if targej[ reached (10)
0 otherwise
Ple) = 1 if agen‘F out of grid (11)
0 otherwise

As shown in Eq. 9, the fitness function F is the difference between the bonus for reaching the target
B(e) and the penalty for leaving the grid P(e), and e is the evaluation episode.

2.1.7 Foraging with poison

The foraging with poison problem typically involves a group of robots that must forage cooper-
atively by avoiding poisonous items [56-58]. In this work, we considered a single-agent version
[45] in which a robot has to forage by avoiding food items. A snapshot of the task is presented
in FIGURE 7: the environment is filled with 10 objects equally split between food sources and
poisonous items. The objective is to forage as many food sources as possible by avoiding poisonous
items. The fitness function F is calculated according to Eq. 12:

NE
F= - 3 INe(e) = Ne(e)] (12)

e=1
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where Np(e) and Np(e) indicate, respectively, how many food sources and poisonous items the
robot eats, while ¢ denotes the evaluation episode.

Figure 7: Foraging with poison problem: an agent (blue circle) has to forage food (green circles)
and avoid poisonous items (red circles).

2.1.8 MuJoCo problems

MulJoCo [46] is a popular simulation engine containing several environments including robot lo-
comotion, robot manipulation and control problems. A detailed description of the environments
is provided at https://gymnasium.farama.org/environments/mujoco/. In particular, we se-
lected three widespread problems: pusher, reacher and swimmer.

Pusher

Figure 8: Pusher task: a robotic arm with two fingertips must take an object (displayed in white)
and place it in a target location (displayed in red).

The pusher problem consists in a robotic arm with two fingertips that has to take an object and place
it in a target location (see FIGURE 8). The fitness function F is expressed as in Eq. 13:

_ 1 & — - 2 B4 7
F= _N_E;[”x(e) ~g (el +0.1xa(e)” +0.5x =X (e) = f ()] (13)
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where e is the evaluation episode, X (e) is the center of mass of the object, g (e) is the center of mass
q
of the goal, a(e) is the applied torque to the joints and f (e) is the center of mass of the fingertips.

Reacher

Figure 9: Reacher task: a robotic arm hinged at the center of the arena must reach a target object
(displayed in red).

The reacher problem consists in a two-segments robotic arm, hinged to the center of the environ-
ment, which has to move in order to reach a target object (see FIGURE 9). The fitness function F
is expressed as in Eq. 14:

Fe —NLE SR - 7@l +a(e)’] (14)

e=1

where e is the evaluation episode, X (¢) is the center of mass of the object, 7(6) is the center of
mass of the fingertip of the arm and a(e) is the applied torque to the joints.

Swimmer

Figure 10: Swimmer task: a snake-like robot must locomote as far as possible in the environment.

The swimmer problem consists in a snake-like robot that has to travel as far as possible (see FIG-
URE 10). The fitness function F is expressed as in Eq. 15:
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NE
F= NLE Z[vx(e) ~0.0001 x a(e)?] (15)

e=1

where e is the evaluation episode, v, (e) is the velocity along the x-axis and a(e) is the applied
torque to the joints.

2.1.9 Pybullet locomotion problems

() (b) (©)

Figure 11: Illustration of the Pybullet locomotion problems considered in this work: (a)
halfcheetah; (b) hopper; (c) walker2D.

Pybullet locomotion [35] is a classic benchmark for RL and ES [14, 59, 60]. Specifically, we
considered the halfcheetah (FIGURE 11-(a)), hopper (FIGURE 11-(b)) and walker2D (FIGURE 11-
(c)) problems. The goal is to locomote as far as possible toward a target location at approximately 1
km away from the robot’s starting position. The problem is formulated according to the following
fitness function (see Eq. 16):

1 NE 1 Nj 1 Nj
F:N—E;[A(e)+Ax(e)—2xﬁj;mj(e)xvj(e)l—o.lxﬁj;aj(e)—O.lxNjL(e)] (16)

where e is the evaluation episode, A(e) is a boolean value rewarding for the robot’s survival ability
(i.e., A(e) = 1 if robot is alive), Ax(e) is the displacement of the robot, N; is the number of joints,
a;(e) is the torque applied to the j — ¢/ joint, v (e) indicates the velocity of the joint j and N; % (e)
counts the number of joints reaching their limits.

2.1.10 Halfcheetah2D

The last considered problem is the 2D version of the Pybullet halfcheetah, called “Halfcheetah2D”,
recently introduced in [47]. The task is illustrated in FIGURE 12: a cheetah robot has to locomote
as far as possible over an almost flat surface, with only limited variations in the slope of the terrain.
Eq. 17 provides the definition of the fitness function F":
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N

1
F=5 ;[Ax(e) - 0.1xN; ()]

(17)

where e represents the evaluation episode, Ax is the distance traveled by the robot and N jL(e)
counts the number of joints reaching their limits.

Figure 12: Halfcheetah2D problem: a cheetah robot must locomote as far as possible in the
environment, which is characterized by limited variations in the slope of the terrain.

2.2 Experimental Settings

All the experiments have been replicated 10 times (i.e., Ng = 10). As regards OpenAl-ES, we kept
the same experimental settings reported in [14, 16, 22, 24]. The length of the refinement process of
PopOpenAI-ES+HC and OpenAI-ES+HC has been set to 5 (i.e., Ng; = 5) analogously to SSSHC
(see also [22, 36, 38]). The population size of PopOpenAI-ES and PopOpenAI-ES+HC has been
set to 10, while SSSHC evolves a population of 20 individuals. A detailed list of algorith settings
is provided in TABLE 2.

Table 2: List of algorithm settings used for the experiments reported in this work. The symbols
are defined as follows: Npg indicates the number of replications; Ngg is the number
of evaluation episodes (i.e., the length of the evolution); Ng; denotes the number of
refinement iteration; PopSize is the population size; MutRate represents the mutation
rate; RecRate indicates the recombination rate (i.e., crossover); ReplProb is the
probability to replace the worst centroid with a copy of the best one. The symbol “N/A” has
been used to indicate that the corresponding parameter is not applicable to that algorithm.

Parameter | OpenAI-ES | PopOpenAI-ES | PopOpenAI-ES+HC [ OpenAI-ES+HC | SSSHC
Nr 10
Nii N/A | 5
PopSize | NA | 10 [ NA | 20
MutRate 0.02
RecRate N/A \ 0.05
ReplProb N/A \ 0.2 \ N/A

The description of the length of evolution Ng, the number of evaluation episodes Ng and the
number of episode’s steps N (i.e., the length of the episode) is shown in TABLE 3. Concerning test
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functions, our experiments have been run for 100 iterations (i.e., Ng = 10°) by setting the length of
the input vector to d = 50, which is evaluated once only (i.e. Ng = 1, Ng = 1).

Table 3: Length of evolution N, number of episodes Ng and episode length N for the N-bit parity,
double pole balancing, mountain car continuous, pendulum, grid navigation, foraging
with poison, pusher, reacher, swimmer, halfcheetah, hopper, walker2D and halfcheetah2D

problems.

Problem N, G N E N, S

5-bit parity 2.5x 107 | 32 1

6-bit parity 2.5x107 | 64 1

7-bit parity 5x107 [ 128 | 1

8-bit parity 108 256 | 1
Double-pole 5x107 | 8 | 1000
Long-poles 5x 107 | 8 [ 1000
Mountain car continuous 107 3 1000
Pendulum 5x107 | 5 | 200
Grid navigation 107 10 | 100
Foraging with poison 25x107 | 5 [ 1000
Pusher 5x107 | 3 | 1000
Reacher 5% 107 3 | 1000
Swimmer 5x 107 3 1000
Halfcheetah 5x107 | 3 | 1000
Hopper 5x107 | 3 | 1000
Walker2D 5x107 | 3 | 1000
Halfcheetah2D 5% 107 3 500

With the exception of test functions, we used an artificial neural network to compute the output
and evaluate the performance. Regarding double pole balancing and grid navigation, we used a
Recurrent Neural Network (RNN) [61, 62]. Conversely, we employed a multi-layer perceptron [63]
for the other problems. The full list of network architectures and their parameters is illustrated in
TABLE 4.

Finally, we adopted batch normalization [64] for the mountain car continuous, reacher, pusher,
swimmer, halfcheetah, hopper, walker2D and halfcheetah2D problems similarly to previous studies
[14, 23, 24, 47].

3. RESULTS

TABLE 5 summarizes the outcomes of our experiments. Surprisingly, SSSHC (i.e., our baseline
method) achieves the best performance in 29 over 50 tasks, including rather difficult problems like
long-poles, grid navigation, foraging and MuJoCo swimmer. Moreover, it outperforms the other
algorithms in 22 test functions (Kruskal-Wallis H test, p < 107%). However, the performance of
SSSHC is remarkably lower than the others with respect to robot locomotion (Kruskal-Wallis H
test, p < 107%). OpenAI-ES bests other methods in 12 tasks, particularly in the Pybullet loco-
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Table 4: Description of the neural network controller used for the N-bit parity, double pole
balancing, mountain car continuous, pendulum, grid navigation, foraging with poison,
pusher, reacher, swimmer, halfcheetah, hopper, walker2D and halfcheetah2D problems.
The symbol Nj, denotes the number of layers, whereas Ny represents the number of
hidden/internal neurons per layer. In addition, the symbols N; and N indicate the number
of inputs and outputs, respectively. Finally, the symbols acty and acto identify the
activation function of hidden and output neurons, respectively.

Problem Network | Ni, | Ng | Ny | No | acty | acto
5-bit parity MLP 5 10 | 5 1 tanh | tanh
6-bit parity MLP 5 10 | 6 1 tanh | tanh
7-bit parity MLP 5 10 | 7 1 tanh | tanh
8-bit parity MLP 5 10 | 8 1 tanh | tanh

Double-pole RNN 1 10 | 3 1 tanh | tanh

Long-poles RNN 1 10 | 3 1 tanh | tanh
Mountain car continuous MLP 1 50 | 2 1 tanh | linear
Pendulum MLP 1 20 3 1 tanh | linear

Grid navigation RNN 1 10 | 4 1 tanh | tanh

Foraging with poison MLP 1 50 | 18 | 2 | tanh | tanh
Pusher MLP 1 50 | 23 7 tanh | linear

Reacher MLP 1 50 | 11 2 tanh | linear

Swimmer MLP 1 50 8 2 tanh | linear
Halfcheetah MLP 1 50 | 26| 6 tanh | linear

Hopper MLP 1 50 | 15| 3 | tanh | linear
Walker2D MLP 1 50 | 22 6 tanh | linear
Halfcheetah2D MLP 1 50 | 26| 6 tanh | linear
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motion problems and in the MuJoCo pusher and reacher tasks (Kruskal-Wallis H test, p < 1076).
PopOpenAI-ES+HC excels in 11 tasks like the complex N-bit parity (with N = 6, 7, 8) and double
pole balancing. This proves its effectiveness moderately difficult scenarios. Lastly, PopOpenAI-ES
and OpenAI-ES+HC obtain lower performance on average with regard to their counterparts. The
final ranking of the algorithms is provided in the last row of TABLE 5.

Table 5: Analysis of the fitness achieved by the different algorithms. Data is represented as u + o
(with u and o denoting, respectively, mean and standard deviation) and is the average of 10
replications of the experiments. Bold values mark the best performance for each problem.

OpenAl-ES

PopOpenAl-ES

PopOpenAl-ESTHC

OpenAI-ES+HC

SSSHC

Ackley

—2.3632 + 0.1941

—1.8805 + 0.2880

—0.0058 + 0.0006

—0.0093 + 0.0010

—0.0005 + 8.2536 x 10~

Alpine no 1

—0.0363 + 0.0010

—0.0353 + 0.0011

—=0.0350 + 0.0010

—0.0367 + 0.0009

—0.0002 + 1.1271 x 107

Chung-Reynolds

—3.2760 x 107" + 2.2760 x 10~

—5.8923 x 1077 = 2.8151 x 10"

—1.3522 x 107 £ 6.3492 x 107

—5.6439 x 1075 + 1.7879 x 10

—6.7720 x 10" £ 4.1614 x 10!

Csendes —2.2096 x 10" T+ 8.8472 X 10~ | =7.0367 x 10~ £ 2.7817 x 1012 | —2.2030 x 10" 2 5.3365 x 10" | =2.5046 x 10~ + 8.3021 x 10~ | =2.7806 x 10~ % & 3.3793 x 10~ 0
Deb 1 0.9883 = 0.0014 0.9910 = 0.0020 0.9911 = 0.0013, 0.9899  0.0014 1.0£3.1828x10°
Dixon-Price —2.3759 = 0.0912 —2.0633  0.2331 —0.0063 = 0.0010 —0.0087 = 0.0011 —0.0005 = 9.2185 x 107
Egg Holder 3156.2269 = 1.8606 x 10 ° 3156.2247 £ 0.0025 3152.7616 + 0.4638 3156.2269 + 2.3020 X 10 ° 1507.2689 = 0.0064
Exponential 0.9999 + 1.8297 X 10" 1.0 +6.2709 X 10" 0.9999 + 1.2303 X 10" 0.9999 + 3.8119 x 10~ 1.0 £ 1.2097 x 10"
Griewank —1.3189x 10 0 £3.1832x 107 | —7.1438x 10 " £ 1.1922x 10 7 | -1.2748x 10 "+ 21797 X 10 0 £ 6.7491x 107 | —3.7365 X 10 ® + 1.4462 X 10 °
Michalewicz 19.4949 = 1.0618 17.4037 = 1.4677 34.0146 £ 0.5825 347250 = 0.3684 35.7310 = 0.0006
Qing —0.0038 = 0.0009 —0.0013 = 0.0002 —0.0028 = 0.0007 —10425.4119 + 0.0731
Quintic —1.4949 = 0.1652 —1.3848 £ 0.1326 —1.5972 £ 0.1018 —0.0290 = 0.0037
Rana 199.3569 + 46.4177 814439 = 7.0020 120.4843 + 25.9303 23.9979 + 0.0528
Rastrigin —25.2212 + 3.2965 —0.0671 = 0.0237 —0.1153 = 0.0211 —0.0002 £ 4.5038 X 10
Rosenbrock —0.0733 = 0.0204 —0.0472 = 0.0100 —0.1072 = 0.0379 —0.0046 = 0.0010
Salomon —0.4099 = 0.0300 . 3 —0.3899 = 0.3000 —0.4099 = 0.0300 ~0.3999 = Ix10° 7
Schaffer F6 —0.0003 £ 7.3073 X 107 —0.000 9 x 107 —0.0002 £ 107 —0.0005 = 0.0001 —1.6206 x 10 5289 X 10~
Schwefel —1.9177x 107 + 1.7759 x 10" | =1.8632 X 102" + 1.6198 x 1021 | =6.0948 x 10~ + 7.2573 x 10->" | —1.2840 X 10~ ® £ 1.7389 x 10~™® [ =5.1907 x 10-7T +5.9951 x 10-°1
Schwefel 1.2 —0.2833 = 0.0820 —0.1930 = 0.0780 —0.0470 = 0.0073 —0.0971 = 0.0330 —0.0006 = 0.0004

Schwefel 2.4

—0.0002 + 5, x 1077

—0.0001 + 2.7330 X 107>

—0.0002 + 4.7089 x 10~

—0.0004 + 0.0002

—6.1160 X 105 + 1.2761 x 10°

Schwefel 2.20

6240.4587 + 5.6536

679.6833 + 1.9553

620.1269 + 1.5509

5589.5693 + 5.1116

49.9958 + 0.0008

Schwefel 2.22

—0.1282 + 0.0190

—0.0881 + 0.0069

—0.1107 £ 0.0119

—0.1428 + 0.0196

-0.0042 + 0.0007

Schwefel 2.23

—9.4544x 10" + 4.1940 x 10°

—2.4257x 10" 7 + 9.6119 x 10"

—4.3998 x 10~ 17+ 2.3700 x 10~

—9.5818 X 10~ 17 + 5.7985 X 10T

—7.3094 x 10-77 £ 1.1630 X 10~

Schwefel 2.26

4.4204x10°F

3.9453 +4.7073 x 10~

0.8413 + 2.1447 x 107

3.9453 £ 1.3523 x 10°
74 5

Shubert 3 +17.4677 7 1+ 5 741.8208 + 0.0265 630.7989 + 0.0504
Shubert 4 030 + 10.4417 369. 95 42 9 + 3 427.1516 + 1.9956 425.8915 + 1.6183 x 107
Sphere —0.0001 + 3.7477 x 10~ —6.3435 x 107> + 1.1988 x 10~ —0.0001 +2.0918 x 10~ —0.0002 + 0.0001 —8.0744 x 1077 + 3.0828 x 1077

Styblinski-Tang

1654.3678 + 54.1088

1662.8504 + 26.4095

1894.6926 + 20.2407

1880.5553 + 40.6046

499.8678 + 0.0156

Sum squarcs

—0.0034 + 0.0010

-0.0021 + 0.0002

—0.0036 + 0.0015

—1.7786 x 107 £ 8.3318 x 10 °

Trid

9648.1236 + 7.8111

1108.2032 + 3.4866

8823.9405 =+ 7.2847

48.9842 + 0.0020

Tr ic 2 —59.8702 + 9.5667 —1.0009 + 0.0001 —1.0009 + 0.0001 -1.0+1.8610 x 10~"
Whitley 1706.7062 + 105.9269 2435.8984 + 4.6378 2424.8824 + 16.3101 2481.5684 + 2.8576
Zakharov —0.1124 + 0.0101 —0.0560 + 0.0151 =0.0 +0.0119 —0.1105 + 0.0093 =0. ]
5-bit parity 0.7689 + 0.0980 0.9281 + 0.0420 0.9656 + 0.0219 0.8594 + 0.1103 0.6 6
6-bit parity 0.7328 + 0.1359 0.9172 + 0.0681 0.9281 + 0.0678 0.8141 +0.1104 0.9281 + 0.0390
7-bit parity 0.8086 + 0.0965 0.8758 + 0.0519 0.9047 + 0.0476 0.8883 + 0.0266 0.8438 + 0.0454
8-bit parity 0.7664 + 0.0881 0.8305 + 0.0894 0.8941 + 0.0344 0.7828 + 0.0909 0.8359 + 0.0446
Double-pole 980.6500 + 61.1901 975.1250 + 78.6617 1000.0 + 0.0 930.1880 + 118.9012 1000.0 £ 0.0
Long-poles 975.3000 + 78.1083 1000.0 + 0.0 1000.0 + 0.0 955.4000 + 94.0298 1000.0 + 0.0
Mountain car continuous 99.9999 + 8.2639 x 10~ 99.9527 + 0.1106 99.9225 +0.1131 99.9997 + 0.0002 21.1963 + 37.9636
Pendulum —439.4861 + 193.7389 —782.7599 + 67.4736 —654.1126 + 45.0868 —298.8404 + 163.0051 —581.8754 + 75.0294

Grid navigation

0.6900 + 0.1758

0.46000 + 0.1356

0.6200 + 0.1470

0.9900 + 0.0300

Foraging with poison

3.1000 + 1.9905

3.000 + 0.9209

+ 0.4686

3.9400 + 1.2682

4.9800 + 0.0600

Pusher —20.0844 + 10802 —D1.1583 = 2.2100 0674  2.9379 —33.3659 = 3.8585 —33.4437 + 1.2360
Reacher 2071 = 0.5370 —2.9864 £ 0.8479 —3.0912 * 0.6699 9
Swimmer 362.0592 = 0.3778 3619829 = 0.5881 362.7665 = 0.6280
Halfcheetah 2077.7122 + 257.8364 1667.3282 = 336.6630 T119.8057 = 686.8173
Hopper 18224101 = 3 1810.0932 + 210.6096 : 63 + 310.7625
Walker2D 820.8865 = 673.9069 = 364.4404 8308 = 77.8970
THallt 2D 187.7617 = 166.5001 + 14.2574 41.0083 = 30.0051
# of tasks with best performance 5 1 29
Ranking 7 3 5 I

If we look carefully at our outcomes, we can see that the three variants introduced in this work
outperform OpenAI-ES in many of the considered problems (see TABLE 6), including several test
functions, N-bit parity and MuJoCo swimmer. Furthermore, they are competitive with respect to
double pole balancing, mountain car continuous and foraging problems. This demonstrates that
these methods represent valid alternatives to OpenAl-ES, particularly in domains characterized by
limited stochasticity or not involving jointed robots interacting with the environment. Conversely,
all the three variants fall short to OpenAI-ES with regard to robot locomotion. This can be explained
by considering that all these methods require an extra-budget reducing the overall number of evolu-
tionary iterations, which has a huge impact in such scenarios. Concerning PopOpenAI-ES+HC and
OpenAI-ES+HC, another drawback lies in the increase of weight size caused by HC. Especially
in complex problems like Pybullet halfcheetah, hopper and walker2D, the refinement process is
highly likely to fail, because finding adaptive single-gene mutations is far from trivial. In addition,
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PopOpenAI-ES+HC and OpenAI-ES+HC are likely to follow completely different, eventually sub-
optimal, evolutionary paths compared to OpenAl-ES, particularly if the local refinement search
affects the centroid during the early stages of the evolution when performance is generally low.

Table 6: Number of problems in which the PopOpenAI-ES, PopOpenAI-ES+HC and OpenAl-

ES+HC algorithms outperform or equal OpenAl-ES.
PopOpenAI-ES | PopOpenAI-ES+HC | OpenAI-ES+HC
# of tasks with performance higher or equal than OpenAI-ES 31 37 24

A summary of the performance difference between OpenAl-ES and the three variants introduced
is shown in FIGURE 13, in which we provide a detailed statistical analysis with respect to the
50 considered problems. As can be observed, PopOpenAl-ES, PopOpenAI-ES+HC and OpenAl-
ES+HC are competitive with OpenAI-ES as regards test function optimization, N-bit parity, double
pole balancing, grid navigation, foraging with poison and MuJoCo swimmer (FIGURE 13, blue
and green squares). Instead, they are outperformed by OpenAlI-ES with respect to MuJoCo pusher,
MuJoCo reacher and Pybullet locomotion problems (FIGURE 13, red squares).

Halfcheetah2D
Ik

Shubert 3
Schwefel 2.26
Schwefel 2.23
Schwefel 2.22
Schwefel 2,20

Schwefel 2.4
Schwefel 1.2
Schwefel
Schaffer F6
Salomon
Rosenbrock
Rastrigin
Rana

Quintic

Qing
Michalewicz
Griewank
Exponential
Egg Holder
Dixon-Price

Csendes
Chung-Reynolds
Alpine no 1
Ackley

PopOpenAl-ES PopOpenAl-ES+HC OpenAl-ES+HC

Figure 13: Statistical comparison between OpenAl-ES and its three variants on the 50 considered
problems. Red squares mean that OpenAlI-ES significantly outperforms its counterpart
based on the Mann-Whitney U test with Bonferroni correction. Conversely, green
squares indicate the statistical superiority of a variant (i.e., PopOpenAI-ES, PopOpenAl-
ES+HC or OpenAI-ES+HC) over OpenAl-ES. Finally, blue squares denote no statistical
difference.
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4. DISCUSSION

Our results emphasize that PopOpenAI-ES, PopOpenAI-ES+HC and OpenAI-ES+HC are better
alternatives than OpenAl-ES regarding 12 test functions, N-bit parity and MuJoCo swimmer, i.e.
problems characterized by limited or absent stochasticity. Furthermore, all the proposed variants
obtain competitive performance in general (see TABLE 6). A notable exception is the class of robot
locomotion problems, in which PopOpenAlI-ES, PopOpenAl-ES+HC and OpenAI-ES+HC are sig-
nificantly outperformed by OpenAIl-ES. As already pointed out in Section 3, the proposed variants
require an extra-budget caused by either the higher number of samples evaluated in each itera-
tion (PopOpenAlI-ES), or the refinement process (OpenAI-ES+HC), or both (PopOpenAI-ES+HC),
which reduces the number of evolutionary iterations and the chance to improve performance. More-
over, as pointed out in [22, 38], the refinement process could fail in discovering adaptive single-
gene mutations, particularly in non-deterministic problems. Future studies should delve into the
mitigation of the stochasticity impact on the local search process.

PopOpenAlI-ES is the variant achieving better performance on the robot locomotion problems,
although significantly inferior to OpenAI-ES. A possible drawback is the replacement of worst
centroid (and the corresponding momentum vectors): on one hand, this technique increases the
average centroid performance on the spot and can be beneficial to escape strong local minima.
On the other hand, it could have a disruptive effect by eliminating solutions that could have later
improved if retained in the population. As a consequence, avoiding the replacement of the worst
centroid (i.e., evolving independent centroids) could have positive effects on the performance.

We implemented this modified version of PopOpenAIl-ES, called PopOpenAI-ES noRep, and con-
ducted a preliminary comparison of PopOpenAI-ES and PopOpenAI-ES noRep in the robot lo-
comotion problems. The outcomes are shown in TABLE 7 and demonstrate that the evolution of
independent centroids leads to enhanced performance in all the cases, particularly for the hopper
task where we found a statistical difference between the two methods (Mann-Whitney U test, p <
0.05, see also FIGURE 14). However, the performance comparison of PopOpenAI-ES_noRep and
OpenAI-ES indicated the superiority of the latter with respect to halfcheetah, hopper and halfchee-
tah2D problems (Mann-Whitney U test, p < 0.05), while no statistical difference has been found
regarding the walker2D problem (Mann-Whitney U test, p > 0.05). Therefore, these results high-
light that PopOpenAI-ES noRep represents a further step toward the enhancement of modern ESs
in complex robot locomotion tasks.

Table 7: Preliminary results of the PopOpenAI-ES algorithm without replacement of the worst
centroid in the Halfcheetah, Hopper, Walker2D and Halfcheetah2D problems.
Halfcheetah Hopper Walker2D Halfcheetah2D
2252.7146 + 266.8057 | 2135.6261 + 194.4838 | 1060.9267 + 344.8909 | 194.6295 + 5.8730

5. CONCLUSIONS

Evolutionary Strategies (ESs) have undergone drastic changes since their introduction in the early
70s. In particular, a shift from biologically inspired methods toward advanced and sophisticated
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Figure 14: Comparison of the fitness obtained by the PopOpenAI-ES and PopOpenAI-ES noRep
algorithms on the locomotion problems: (a) Halfcheetah; (b) Hopper; (c) Walker2D; (d)
Halfcheetah2D. The symbol () indicates that the two methods are statistically different.
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techniques has become an appealing research direction. In fact, the possibility to apply ESs in a wide
range of problems (from relatively simple control tasks to challenging locomotion and manipulation
problems) boosted the development of new approaches constantly aiming to enhanced performance.
Among these methods, state-of-the-art techniques include CMA-ES and xNES, which compute
expensive covariance matrices to store information about parameter variations that should lead to
a better search space exploration. However, as the number of parameters increase dramatically,
the calculation of covariance matrices becomes intractable and prevents these methods from being
used in challenging locomotion problems (see [14, 20]). OpenAI-ES emerged as a valuable ES
for a broad set of problems, including robot locomotion, pole balancing and swarm robotics. The
main advantage of OpenAI-ES is the usage of two momentum vectors maintaining historical data
about the relationship between parameter variations and performance, with no need for additional
computations. However, there are cases in which OpenAI-ES generates sub-optimal performance
compared to other methods like RL or EAs [14, 22].

This work introduces three variants of OpenAI-ES:

» PopOpenAlI-ES: it is a version of OpenAl-ES evolving a population of independent centroids
with the possibility to replace at each iteration the worst performing centroid with the best
one;

* PopOpenAI-ES+HC: it combines PopOpenAlI-ES with the HC algorithm, which runs a local
search process seeking to improve performance;

* OpenAI-ES+HC: it combines OpenAl-ES with HC.

In particular, we delve into a comparison of OpenAl-ES, PopOpenAl-ES, PopOpenAI-ES+HC and
OpenAI-ES+HC in 50 problems, including benchmark tasks like test function optimization, N-bit
parity, double pole balancing and robot locomotion. Moreover, we used SSSHC as a baseline
method for the comparison. The results of our investigation proves the competitiveness of the
proposed variants with respect to many of the considered problems. Surprisingly, SSSHC is the
best algorithm in 29 over 50 problems. This confirms that even a simple EA can perform similarly,
or even outperform, a sophisticated method [22, 65]. Finally, OpenAI-ES outperforms the other
methods with regard to the most complex problems like Pybullet robot locomotion. The latter
outcome is mainly related to the extra-budget required by the proposed variants. Furthermore,
the replacement of the worst centroid in PopOpenAI-ES and PopOpenAI-ES+HC algorithms might
have disruptive effects in robot locomotion problems. In fact, the preliminary study on PopOpenAl-
ES noRep (i.e., a version of PopOpenAI-ES without replacing the worst centroid) provides better
results on the halfcheetah, hopper, walker2D and halfcheetah2D problems, although still inferior to
OpenAl-ES.

As new research pathways, we aim to overcome the limitations of PopOpenAl-ES, PopOpenAl-
ES+HC and OpenAI-ES+HC highlighted in this work. First, the number of evolved centroids has
been set to 10, but no hyperparameter analysis has been made. Future work could investigate
the relationship between number of centroids and performance, and techniques to automatically
determine the suitable number of centroids to be evolved, as well as to identify the optimal values
of each algorithm’s hyperparameters [66—69]. Furthermore, the refinement process performed by
HC might fail in the enhancement of performance, especially for complex tasks like robot locomo-
tion. In fact, although the usage of single-gene mutations is more likely to discover truly adaptive
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modifications, it can have disruptive effects in stochastic scenarios such as Pybullet locomotion
problems. Analyzing the effect of multiple-gene mutations could be object of future studies, as well
as the implementation of techniques keeping the size of connection weights limited, which turns out
to be paramount in such scenarios.
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